Detecting Adversarial Spectrum Attacks via Distance to Decision Boundary Statistics

Image credit: Unsplash

Abstract

In this paper, we propose an efficient framework for detecting adversarial spectrum attacks. Our design leverages the concept of the distance to the decision boundary (DDB) observed at the fusion center and compares the training and testing DDB distributions to identify adversarial spectrum attacks. We create a computationally efficient way to compute the DDB for machine learning based spectrum sensing systems.

Publication
Infocom 2024
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.